YRC Logo
PROTEIN SEARCH:
Descriptions Names[Advanced Search]

The V0 domain of a proton-transporting V-type ATPase found in the vacuolar membrane. Any macromolecular complex composed of two or more polypeptide subunits, which may or may not be identical. Protein complexes may have other associated non-protein prosthetic groups, such as nucleotides, metal ions or other small molecules. A proton-transporting two-sector ATPase complex that couples ATP hydrolysis to the transport of protons across a concentration gradient. The resulting transmembrane electrochemical potential of H+ is used to drive a variety of (i) secondary active transport systems via H+-dependent symporters and antiporters and (ii) channel-mediated transport systems. The complex comprises a membrane sector (V0) that carries out proton transport and a cytoplasmic compartment sector (V1) that catalyzes ATP hydrolysis. V-type ATPases are found in the membranes of organelles such as vacuoles, endosomes, and lysosomes, and in the plasma membrane. A protein complex that forms part of a proton-transporting two-sector ATPase complex and carries out proton transport across a membrane. The proton-transporting domain (F0, V0, or A0) includes integral and peripheral membrane proteins. A large protein complex that catalyzes the synthesis or hydrolysis of ATP by a rotational mechanism, coupled to the transport of protons across a membrane. The complex comprises a membrane sector (F0, V0, or A0) that carries out proton transport and a cytoplasmic compartment sector (F1, V1, or A1) that catalyzes ATP synthesis or hydrolysis. Two major types have been characterized: V-type ATPases couple ATP hydrolysis to the transport of protons across a concentration gradient, whereas F-type ATPases, also known as ATP synthases, normally run in the reverse direction to utilize energy from a proton concentration or electrochemical gradient to synthesize ATP. A third type, A-type ATPases have been found in archaea, and are closely related to eukaryotic V-type ATPases but are reversible. Any constituent part of a membrane, a double layer of lipid molecules that encloses all cells, and, in eukaryotes, many organelles; may be a single or double lipid bilayer; also includes associated proteins. The V0 domain of a proton-transporting V-type ATPase found in the plasma membrane. A protein complex that forms part of a proton-transporting V-type ATPase and mediates proton transport across a membrane. The V0 complex consists of at least four different subunits (a,c,d and e); six or more c subunits form a proton-binding rotor ring.

View Gene Ontology (GO) Term

GO TERM SUMMARY

Name: proton-transporting V-type ATPase, V0 domain
Acc: GO:0033179
Aspect: Cellular Component
Desc: A protein complex that forms part of a proton-transporting V-type ATPase and mediates proton transport across a membrane. The V0 complex consists of at least four different subunits (a,c,d and e); six or more c subunits form a proton-binding rotor ring.
Proteins in PDR annotated with:
   This term: 20 [Search]
   Term or descendants: 56 [Search]


[geneontology.org]
INTERACTIVE GO GRAPH

GO:0033179 - proton-transporting V-type ATPase, V0 domain (interactive image map)

YRC Informatics Platform - Version 3.0
Created and Maintained by: Michael Riffle