YRC Logo
PROTEIN SEARCH:
Descriptions Names[Advanced Search]

The junction between a nerve fiber of one neuron and another neuron or muscle fiber or glial cell; the site of interneuronal communication. As the nerve fiber approaches the synapse it enlarges into a specialized structure, the presynaptic nerve ending, which contains mitochondria and synaptic vesicles. At the tip of the nerve ending is the presynaptic membrane; facing it, and separated from it by a minute cleft (the synaptic cleft) is a specialized area of membrane on the receiving cell, known as the postsynaptic membrane. In response to the arrival of nerve impulses, the presynaptic nerve ending secretes molecules of neurotransmitters into the synaptic cleft. These diffuse across the cleft and transmit the signal to the postsynaptic membrane. The part of a cell or its extracellular environment in which a gene product is located. A gene product may be located in one or more parts of a cell and its location may be as specific as a particular macromolecular complex, that is, a stable, persistent association of macromolecules that function together. A type of synapse occurring between an axon and a dendritic spine or dendritic shaft. Asymmetric synapses, the most abundant synapse type in the central nervous system, involve axons that contain predominantly spherical vesicles and contain a thickened postsynaptic density.

View Gene Ontology (GO) Term

GO TERM SUMMARY

Name: asymmetric synapse
Acc: GO:0032279
Aspect: Cellular Component
Desc: A type of synapse occurring between an axon and a dendritic spine or dendritic shaft. Asymmetric synapses, the most abundant synapse type in the central nervous system, involve axons that contain predominantly spherical vesicles and contain a thickened postsynaptic density.
Proteins in PDR annotated with:
   This term: 30 [Search]
   Term or descendants: 30 [Search]


[geneontology.org]
INTERACTIVE GO GRAPH

GO:0032279 - asymmetric synapse (interactive image map)

YRC Informatics Platform - Version 3.0
Created and Maintained by: Michael Riffle