YRC Logo
PROTEIN SEARCH:
Descriptions Names[Advanced Search]

The process whose specific outcome is the progression of the lateral ventricles over time, from the formation to the mature structure. The two lateral ventricles are a cavity in each of the cerebral hemispheres derived from the cavity of the embryonic neural tube. They are separated from each other by the septum pellucidum, and each communicates with the third ventricle by the foramen of Monro, through which also the choroid plexuses of the lateral ventricles become continuous with that of the third ventricle. The process whose specific outcome is the progression of the brain over time, from its formation to the mature structure. Brain development begins with patterning events in the neural tube and ends with the mature structure that is the center of thought and emotion. The brain is responsible for the coordination and control of bodily activities and the interpretation of information from the senses (sight, hearing, smell, etc.). The process whose specific outcome is the progression of the fourth ventricle over time, from its formation to the mature structure. The fourth ventricle is an irregularly shaped cavity in the rhombencephalon, between the medulla oblongata, the pons, and the isthmus in front, and the cerebellum behind. It is continuous with the central canal of the cord below and with the cerebral aqueduct above, and through its lateral and median apertures it communicates with the subarachnoid space. The process whose specific outcome is the progression of the brain ventricular system over time, from its formation to the mature structure. The brain ventricular system consists of four communicating cavities within the brain that are continuous with the central canal of the spinal cord. These cavities include two lateral ventricles, the third ventricle and the fourth ventricle. Cerebrospinal fluid fills the ventricles and is produced by the choroid plexus. The biological process whose specific outcome is the progression of a multicellular organism over time from an initial condition (e.g. a zygote or a young adult) to a later condition (e.g. a multicellular animal or an aged adult). Development of a tissue or tissues that work together to perform a specific function or functions. Development pertains to the process whose specific outcome is the progression of a structure over time, from its formation to the mature structure. Organs are commonly observed as visibly distinct structures, but may also exist as loosely associated clusters of cells that work together to perform a specific function or functions. The process whose specific outcome is the progression of the central nervous system over time, from its formation to the mature structure. The central nervous system is the core nervous system that serves an integrating and coordinating function. In vertebrates it consists of the brain, spinal cord and spinal nerves. In those invertebrates with a central nervous system it typically consists of a brain, cerebral ganglia and a nerve cord. The biological process whose specific outcome is the progression of an anatomical structure from an initial condition to its mature state. This process begins with the formation of the structure and ends with the mature structure, whatever form that may be including its natural destruction. An anatomical structure is any biological entity that occupies space and is distinguished from its surroundings. Anatomical structures can be macroscopic such as a carpel, or microscopic such as an acrosome. The process whose specific outcome is the progression of an organismal system over time, from its formation to the mature structure. A system is a regularly interacting or interdependent group of organs or tissues that work together to carry out a given biological process. The process whose specific outcome is the progression of the third ventricle over time, from its formation to the mature structure. The third ventricle is the narrow cleft inferior to the corpus callosum, within the diencephalon, between the paired thalami. Its floor is formed by the hypothalamus, its anterior wall by the lamina terminalis, and its roof by ependyma, and it communicates with the fourth ventricle by the cerebral aqueduct, and with the lateral ventricles by the interventricular foramina.

View Gene Ontology (GO) Term

GO TERM SUMMARY

Name: ventricular system development
Acc: GO:0021591
Aspect: Biological Process
Desc: The process whose specific outcome is the progression of the brain ventricular system over time, from its formation to the mature structure. The brain ventricular system consists of four communicating cavities within the brain that are continuous with the central canal of the spinal cord. These cavities include two lateral ventricles, the third ventricle and the fourth ventricle. Cerebrospinal fluid fills the ventricles and is produced by the choroid plexus.
Proteins in PDR annotated with:
   This term: 2 [Search]
   Term or descendants: 19 [Search]


[geneontology.org]
INTERACTIVE GO GRAPH

GO:0021591 - ventricular system development (interactive image map)

YRC Informatics Platform - Version 3.0
Created and Maintained by: Michael Riffle