p13suc1 acts in the fission yeast cell division cycle as a component of the p34cdc2 protein kinase

EMBO J. 1987 Nov;6(11):3507-14. doi: 10.1002/j.1460-2075.1987.tb02676.x.

Abstract

cdc2+ encodes a protein kinase that is required during both G1 and G2 phases of the cell division cycle in fission yeast. suc1+ is an essential gene that was originally identified as a plasmid-borne sequence that could rescue certain temperature-sensitive cdc2 mutants. To investigate the role of the suc1+ gene product in the cell cycle p13suc1 has been expressed in Escherichia coli and purified. An immunoaffinity purified anti-p13suc1 polyclonal serum has been prepared and used to identify p13suc1 in fission yeast. The abundance of this protein did not alter either during the cell cycle or during entry into stationary phase. p13suc1 was found in yeast lysates in a complex with the cdc2+ gene product. Approximately 5% of cellular p34cdc2 was associated with p13suc1, and this fraction of p34cdc2 was active as a protein kinase. The stability of the complex was disrupted in yeast strains carrying temperature-sensitive alleles of cdc2 that are suppressible by overexpression of suc1+. The level of association between p13suc1 and p34cdc2 was not affected by cell cycle arrest in adverse nutritional conditions. p13suc1 is not a substrate of the p34cdc2 protein kinase. We propose instead that it acts as a regulatory component of p34cdc2 that facilitates interaction with other proteins.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Alleles
  • Base Sequence
  • Cell Division
  • Cloning, Molecular
  • Escherichia coli / genetics
  • Genes*
  • Genes, Fungal*
  • Molecular Sequence Data
  • Plasmids
  • Protein Kinases / genetics*
  • Schizosaccharomyces / cytology
  • Schizosaccharomyces / enzymology
  • Schizosaccharomyces / genetics*
  • Temperature

Substances

  • Protein Kinases