Identification of a novel NADH-specific aldo-keto reductase using sequence and structural homologies

Biochem J. 2006 Nov 15;400(1):105-14. doi: 10.1042/BJ20060660.

Abstract

The AKRs (aldo-keto reductases) are a superfamily of enzymes which mainly rely on NADPH to reversibly reduce various carbonyl-containing compounds to the corresponding alcohols. A small number have been found with dual NADPH/NADH specificity, usually preferring NADPH, but none are exclusive for NADH. Crystal structures of the dual-specificity enzyme xylose reductase (AKR2B5) indicate that NAD+ is bound via a key interaction with a glutamate that is able to change conformations to accommodate the 2'-phosphate of NADP+. Sequence comparisons suggest that analogous glutamate or aspartate residues may function in other AKRs to allow NADH utilization. Based on this, nine putative enzymes with potential NADH specificity were identified and seven genes were successfully expressed and purified from Drosophila melanogaster, Escherichia coli, Schizosaccharomyces pombe, Sulfolobus solfataricus, Sinorhizobium meliloti and Thermotoga maritima. Each was assayed for co-substrate dependence with conventional AKR substrates. Three were exclusive for NADPH (AKR2E3, AKR3F2 and AKR3F3), two were dual-specific (AKR3C2 and AKR3F1) and one was specific for NADH (AKR11B2), the first such activity in an AKR. Fluorescence measurements of the seventh protein indicated that it bound both NADPH and NADH but had no activity. Mutation of the aspartate into an alanine residue or a more mobile glutamate in the NADH-specific E. coli protein converted it into an enzyme with dual specificity. These results show that the presence of this carboxylate is an indication of NADH dependence. This should allow improved prediction of co-substrate specificity and provide a basis for engineering enzymes with altered co-substrate utilization for this class of enzymes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alcohol Oxidoreductases / chemistry
  • Alcohol Oxidoreductases / genetics
  • Alcohol Oxidoreductases / metabolism*
  • Aldehyde Reductase
  • Aldo-Keto Reductases
  • Amino Acid Sequence
  • Animals
  • Catalysis
  • Drosophila melanogaster / enzymology
  • Drosophila melanogaster / genetics
  • Escherichia coli / enzymology
  • Escherichia coli / genetics
  • Kinetics
  • Models, Molecular
  • Molecular Sequence Data
  • Mutation / genetics
  • NAD / metabolism*
  • NADP / metabolism
  • Protein Binding
  • Protein Conformation
  • Schizosaccharomyces / enzymology
  • Schizosaccharomyces / genetics
  • Sequence Alignment
  • Sequence Homology, Amino Acid
  • Sinorhizobium meliloti / enzymology
  • Sinorhizobium meliloti / genetics
  • Substrate Specificity
  • Sulfolobus solfataricus / enzymology
  • Sulfolobus solfataricus / genetics
  • Thermotoga maritima / enzymology
  • Thermotoga maritima / genetics

Substances

  • NAD
  • NADP
  • Alcohol Oxidoreductases
  • Aldo-Keto Reductases
  • Aldehyde Reductase