A network of stimulatory and inhibitory Galpha-subunits regulates olfaction in Caenorhabditis elegans

Genetics. 2004 Aug;167(4):1677-87. doi: 10.1534/genetics.103.024786.

Abstract

The two pairs of sensory neurons of C. elegans, AWA and AWC, that mediate odorant attraction, express six Galpha-subunits, suggesting that olfaction is regulated by a complex signaling network. Here, we describe the cellular localization and functions of the six olfactory Galpha-subunits: GPA-2, GPA-3, GPA-5, GPA-6, GPA-13, and ODR-3. All except GPA-6 localize to sensory cilia, suggesting a direct role in sensory transduction. GPA-2, GPA-3, GPA-5, and GPA-6 are also present in cell bodies and axons and GPA-5 specifically localizes to synaptic sites. Analysis of animals with single- to sixfold loss-of-function mutations shows that olfaction involves a balance between multiple stimulatory and inhibitory signals. ODR-3 constitutes the main stimulatory signal and is sufficient for the detection of odorants. GPA-3 forms a second stimulatory signal in the AWA and AWC neurons, also sufficient for odorant detection. In AWA, signaling is suppressed by GPA-5. In AWC, GPA-2 and GPA-13 negatively and positively regulate signaling, respectively. Finally, we show that only ODR-3 plays a role in cilia morphogenesis. Defects in this process are, however, independent of olfactory behavior. Our findings reveal the existence of a complex signaling network that controls odorant detection by C. elegans.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Caenorhabditis elegans / cytology
  • Caenorhabditis elegans / genetics*
  • Caenorhabditis elegans Proteins / genetics*
  • GTP-Binding Protein alpha Subunits / genetics*
  • Gene Expression Regulation / genetics*
  • Odorants*
  • Plasmids / genetics
  • Smell / physiology*

Substances

  • Caenorhabditis elegans Proteins
  • GTP-Binding Protein alpha Subunits