Distinct developmental function of two Caenorhabditis elegans homologs of the cohesin subunit Scc1/Rad21

Mol Biol Cell. 2003 Jun;14(6):2399-409. doi: 10.1091/mbc.e02-09-0603. Epub 2003 Feb 6.

Abstract

Cohesin, which mediates sister chromatid cohesion, is composed of four subunits, named Scc1/Rad21, Scc3, Smc1, and Smc3 in yeast. Caenorhabditis elegans has a single homolog for each of Scc3, Smc1, and Smc3, but as many as four for Scc1/Rad21 (COH-1, SCC-1/COH-2, COH-3, and REC-8). Except for REC-8 required for meiosis, function of these C. elegans proteins remains largely unknown. Herein, we examined their possible involvement in mitosis and development. Embryos depleted of the homolog of either Scc3, or Smc1, or Smc3 by RNA interference revealed a defect in mitotic chromosome segregation but not in chromosome condensation and cytokinesis. Depletion of SCC-1/COH-2 caused similar phenotypes. SCC-1/COH-2 was present in cells destined to divide. It localized to chromosomes in a cell cycle-dependent manner. Worms depleted of COH-1 arrested at either the late embryonic or the larval stage, with no indication of mitotic dysfunction. COH-1 associated chromosomes throughout the cell cycle in all somatic cells undergoing late embryogenesis or larval development. Thus, SCC-1/COH-2 and the homologs of Scc3, Smc1, and Smc3 facilitate mitotic chromosome segregation during the development, presumably by forming a cohesin complex, whereas COH-1 seems to play a role important for development but unrelated to mitosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Caenorhabditis elegans / embryology
  • Caenorhabditis elegans / metabolism*
  • Caenorhabditis elegans Proteins / metabolism
  • Cell Cycle Proteins / metabolism*
  • Chromosomal Proteins, Non-Histone / metabolism
  • Cohesins
  • Fungal Proteins
  • Larva
  • Nuclear Proteins / metabolism*
  • Phosphoproteins
  • Saccharomyces cerevisiae Proteins

Substances

  • COH-1 protein, C elegans
  • Caenorhabditis elegans Proteins
  • Cell Cycle Proteins
  • Chromosomal Proteins, Non-Histone
  • Fungal Proteins
  • MCD1 protein, S cerevisiae
  • Nuclear Proteins
  • Phosphoproteins
  • Saccharomyces cerevisiae Proteins