The first putative transmembrane segment of subunit c" (Vma16p) of the yeast V-ATPase is not necessary for function

J Biol Chem. 2003 Feb 21;278(8):5821-7. doi: 10.1074/jbc.M209875200. Epub 2002 Dec 12.

Abstract

The yeast vacuolar ATPase (V-ATPase) contains three proteolipid subunits: c (Vma3p), c' (Vma11p), and c" (Vma16p). Each subunit contains a buried glutamate residue that is essential for function, and these subunits are not able to substitute for each other in supporting activity. Subunits c and c' each contain four putative transmembrane segments (TM1-4), whereas subunit c" is predicted to contain five. To determine whether TM1 of subunit c" serves an essential function, a deletion mutant of Vma16p was constructed lacking TM1 (Vma16p-Delta TM1). Although this construct does not complement the loss of Vma3p or Vma11p, it does complement the loss of full-length Vma16p. Vacuoles isolated from the strain expressing Vma16p-Delta TM1 showed V-ATPase activity and proton transport greater than 80% relative to wild type and displayed wild type levels of subunits A and a, suggesting normal assembly of the V-ATPase complex. These results suggest that TM1 of Vma16p is dispensable for both activity and assembly of the V-ATPase. To obtain information about the topology of Vma16p, labeling of single cysteine-containing mutants using the membrane-permeable reagent 3-(N-maleimidylpropionyl)biocytin (MPB) and the -impermeable reagent 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid (AMS) was tested. Both the Cys-less form of Vma16p and eight single cysteine-containing mutants retained greater than 80% of wild type levels of activity. Of the eight mutants tested, two (S5C and S178C) were labeled by MPB. MPB-labeling of S5C was blocked by AMS in intact vacuoles, whereas S178C was blocked by AMS only in the presence of permeabilizing concentrations of detergent. In addition, a hemagglutinin epitope tag introduced into the C terminus of Vma16p was recognized by an anti-hemagglutinin antibody in intact vacuolar membranes, suggesting a cytoplasmic orientation for the C terminus. These results suggest that subunit c" contains four rather than five transmembrane segments with both the N and C terminus on the cytoplasmic side of the membrane.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Amino Acid Substitution
  • Molecular Sequence Data
  • Mutagenesis, Site-Directed
  • Protein Subunits / chemistry
  • Protein Subunits / metabolism
  • Proteolipids / chemistry
  • Proteolipids / metabolism
  • Proton-Translocating ATPases / chemistry
  • Proton-Translocating ATPases / metabolism
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / metabolism
  • Saccharomyces cerevisiae / enzymology
  • Saccharomyces cerevisiae Proteins / chemistry
  • Saccharomyces cerevisiae Proteins / metabolism
  • Sequence Alignment
  • Sequence Homology, Amino Acid
  • Vacuolar Proton-Translocating ATPases / chemistry*
  • Vacuolar Proton-Translocating ATPases / metabolism*

Substances

  • Protein Subunits
  • Proteolipids
  • Recombinant Proteins
  • Saccharomyces cerevisiae Proteins
  • VMA11 protein, S cerevisiae
  • Vacuolar Proton-Translocating ATPases
  • Proton-Translocating ATPases