LET-99 determines spindle position and is asymmetrically enriched in response to PAR polarity cues in C. elegans embryos

Development. 2002 Oct;129(19):4469-81. doi: 10.1242/dev.129.19.4469.

Abstract

Asymmetric cell division depends on coordinating the position of the mitotic spindle with the axis of cellular polarity. We provide evidence that LET-99 is a link between polarity cues and the downstream machinery that determines spindle positioning in C. elegans embryos. In let-99 one-cell embryos, the nuclear-centrosome complex exhibits a hyperactive oscillation that is dynein dependent, instead of the normal anteriorly directed migration and rotation of the nuclear-centrosome complex. Furthermore, at anaphase in let-99 embryos the spindle poles do not show the characteristic asymmetric movements typical of wild type animals. LET-99 is a DEP domain protein that is asymmetrically enriched in a band that encircles P lineage cells. The LET-99 localization pattern is dependent on PAR polarity cues and correlates with nuclear rotation and anaphase spindle pole movements in wild-type embryos, as well as with changes in these movements in par mutant embryos. In particular, LET-99 is uniformly localized in one-cell par-3 embryos at the time of nuclear rotation. Rotation fails in spherical par-3 embryos in which the eggshell has been removed, but rotation occurs normally in spherical wild-type embryos. The latter results indicate that nuclear rotation in intact par-3 embryos is dictated by the geometry of the oblong egg and are consistent with the model that the LET-99 band is important for rotation in wild-type embryos. Together, the data indicate that LET-99 acts downstream of PAR-3 and PAR-2 to determine spindle positioning, potentially through the asymmetric regulation of forces on the spindle.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Anaphase
  • Animals
  • Caenorhabditis elegans / embryology
  • Caenorhabditis elegans / genetics
  • Caenorhabditis elegans Proteins / genetics
  • Caenorhabditis elegans Proteins / metabolism*
  • Cell Lineage
  • Cell Nucleus / metabolism
  • Mutagenesis
  • Protein Serine-Threonine Kinases
  • Spindle Apparatus / physiology*

Substances

  • Caenorhabditis elegans Proteins
  • LET-99 protein, C elegans
  • par-2 protein, C elegans
  • PAR-3 protein, C elegans
  • Protein Serine-Threonine Kinases