Identification of a Ras palmitoyltransferase in Saccharomyces cerevisiae

J Biol Chem. 2002 Oct 25;277(43):41268-73. doi: 10.1074/jbc.M206573200. Epub 2002 Aug 21.

Abstract

Most Ras proteins are posttranslationally modified by a palmitoyl lipid moiety through a thioester linkage. However, the mechanism by which this occurs is not known. Here, evidence is presented that the Ras2 protein of Saccharomyces cerevisiae is palmitoylated by a Ras protein acyltransferase (Ras PAT) encoded by the ERF2 and ERF4 genes. Erf2p is a 41-kDa protein localized to the membrane of the endoplasmic reticulum and contains a conserved DHHC cysteine-rich domain (DHHC-CRD). Erf2p co-purifies with Erf4p (26 kDa) when it is expressed in yeast or in Escherichia coli. The Erf2p/Erf4p complex is required for Ras PAT activity, and mutations within conserved residues (Cys(189), His(201), and Cys(203)) of the Erf2p DHHC-CRD domain abolish Ras PAT activity. Furthermore, a palmitoyl-Erf2p intermediate is detected suggesting that Erf2p is directly involved in palmitate transfer. ERF2 and ERF4 are the first genes identified that encode a palmitoyltransferase for a Ras GTPase.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Genes, Fungal
  • Plasmids
  • Saccharomyces cerevisiae / enzymology*
  • Saccharomyces cerevisiae / genetics
  • ras Proteins / metabolism*

Substances

  • ras Proteins