Two type V myosins with non-overlapping functions in the fission yeast Schizosaccharomyces pombe: Myo52 is concerned with growth polarity and cytokinesis, Myo51 is a component of the cytokinetic actin ring

J Cell Sci. 2001 Jan;114(Pt 1):69-79. doi: 10.1242/jcs.114.1.69.

Abstract

The fission yeast genome project has identified five myosin genes: one type I myosin, myo1(+), two type II myosins, myo2(+) and myp2(+), and two type V myosins, myo51(+) and myo52(+). Cells deleted for myo51(+) show normal morphology and growth rates whereas deletion of myo52(+) results in a partial loss of cell polarity, slow growth and cytokinetic defects. Combining both deletions in a single strain is phenotypically non-additive, myo52(delta) being epistatic to myo51(delta). Overproduction of Myo51 gives rise to elongated cells which fail to form functional septa whereas overproduction of Myo52 results in branched cells with aberrant septa that fail to cleave. Myo52 localises to the poles of growing cells but during cell division it relocalises to the cell equator as a bar that is bisected by the cytokinetic septum. Myo51 shows no obvious localisation during interphase but at cytokinesis it is associated with the contractile cytokinetic actin ring (CAR). Both myosins are dependent upon an intact actin cytoskeleton for localisation. Myo52 partially colocalises with the (alpha)-glucan synthase Mok1 at the cell tips and to a lesser extent at the septum. Mok1 is delocalised and upregulated in myo52(delta) and myo52(delta) cell walls are resistant to digestion by the cell wall degrading enzyme zymolyase. Thus myo52(+) appears to be involved in the local delivery or positioning of vesicles containing cell wall precursors at the cell tips and has a role in the maturation or cleavage of the septum. Myo51 has a non-essential role in cytokinesis as a component of the cytokinetic actin ring.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actins / metabolism*
  • Animals
  • Cell Cycle
  • Cell Wall / metabolism
  • Cytoskeleton / metabolism
  • Fungal Proteins / genetics
  • Fungal Proteins / metabolism
  • Fungal Proteins / physiology*
  • Myosins / genetics
  • Myosins / metabolism
  • Myosins / physiology*
  • Phenotype
  • Schizosaccharomyces / physiology*

Substances

  • Actins
  • Fungal Proteins
  • Myosins