YRC Logo
PROTEIN SEARCH:
Descriptions Names[Advanced Search]

The process whose specific outcome is the progression of the digestive system over time, from its formation to the mature structure. The digestive system is the entire structure in which digestion takes place. Digestion is all of the physical, chemical, and biochemical processes carried out by multicellular organisms to break down ingested nutrients into components that may be easily absorbed and directed into metabolism. The process whose specific outcome is the progression of the urogenital system over time, from its formation to the mature structure. Development of a tissue or tissues that work together to perform a specific function or functions. Development pertains to the process whose specific outcome is the progression of a structure over time, from its formation to the mature structure. Organs are commonly observed as visibly distinct structures, but may also exist as loosely associated clusters of cells that work together to perform a specific function or functions. The process whose specific outcome is the progression of an organismal system over time, from its formation to the mature structure. A system is a regularly interacting or interdependent group of organs or tissues that work together to carry out a given biological process. A biological process whose specific outcome is the progression of an integrated living unit: an anatomical structure (which may be a subcellular structure, cell, tissue, or organ), or organism over time from an initial condition to a later condition. Any biological process, occurring at the level of a multicellular organism, pertinent to its function. The progression of the hepaticobiliary system over time, from its formation to the mature structure. The hepaticobiliary system is responsible for metabolic and catabolic processing of small molecules absorbed from the blood or gut, hormones and serum proteins, detoxification, storage of glycogen, triglycerides, metals and lipid soluble vitamins and excretion of bile. Included are the synthesis of albumin, blood coagulation factors, complement, and specific binding proteins. The progression of the respiratory system over time from its formation to its mature structure. The respiratory system carries out respiratory gaseous exchange. The progression of physiological phases, occurring in the endometrium during the menstrual cycle that recur at regular intervals during the reproductive years. The menstrual cycle is an ovulation cycle where the endometrium is shed if pregnancy does not occur. The process whose specific outcome is the progression of an organismal system whose objective is to provide calibrated responses by an organism to a potential internal or invasive threat, over time, from its formation to the mature structure. A system is a regularly interacting or interdependent group of organs or tissues that work together to carry out a given biological process. The process whose specific outcome is the progression of the parasympathetic nervous system over time, from its formation to the mature structure. The parasympathetic nervous system is one of the two divisions of the vertebrate autonomic nervous system. Parasympathetic nerves emerge cranially as pre ganglionic fibers from oculomotor, facial, glossopharyngeal and vagus and from the sacral region of the spinal cord. Most neurons are cholinergic and responses are mediated by muscarinic receptors. The parasympathetic system innervates, for example: salivary glands, thoracic and abdominal viscera, bladder and genitalia. The biological process whose specific outcome is the progression of a multicellular organism over time from an initial condition (e.g. a zygote or a young adult) to a later condition (e.g. a multicellular animal or an aged adult). The process whose specific outcome is the progression of the autonomic nervous system over time, from its formation to the mature structure. The autonomic nervous system is composed of neurons that are not under conscious control, and is comprised of two antagonistic components, the sympathetic and parasympathetic nervous systems. The autonomic nervous system regulates key functions including the activity of the cardiac (heart) muscle, smooth muscles (e.g. of the gut), and glands. The process whose specific outcome is the progression of the central nervous system over time, from its formation to the mature structure. The central nervous system is the core nervous system that serves an integrating and coordinating function. In vertebrates it consists of the brain, spinal cord and spinal nerves. In those invertebrates with a central nervous system it typically consists of a brain, cerebral ganglia and a nerve cord. The biological process whose specific outcome is the progression of an anatomical structure from an initial condition to its mature state. This process begins with the formation of the structure and ends with the mature structure, whatever form that may be including its natural destruction. An anatomical structure is any biological entity that occupies space and is distinguished from its surroundings. Anatomical structures can be macroscopic such as a carpel, or microscopic such as an acrosome. The process whose specific outcome is the progression of the sympathetic nervous system over time, from its formation to the mature structure. The sympathetic nervous system is one of the two divisions of the vertebrate autonomic nervous system (the other being the parasympathetic nervous system). The sympathetic preganglionic neurons have their cell bodies in the thoracic and lumbar regions of the spinal cord and connect to the paravertebral chain of sympathetic ganglia. Innervate heart and blood vessels, sweat glands, viscera and the adrenal medulla. Most sympathetic neurons, but not all, use noradrenaline as a post-ganglionic neurotransmitter. The process whose specific outcome is the progression of the enteric nervous system over time, from its formation to the mature structure. The enteric nervous system is composed of two ganglionated neural plexuses in the gut wall which form one of the three major divisions of the autonomic nervous system. The enteric nervous system innervates the gastrointestinal tract, the pancreas, and the gall bladder. It contains sensory neurons, interneurons, and motor neurons. Thus the circuitry can autonomously sense the tension and the chemical environment in the gut and regulate blood vessel tone, motility, secretions, and fluid transport. The system is itself governed by the central nervous system and receives both parasympathetic and sympathetic innervation. The process whose specific outcome is the progression of nervous tissue over time, from its formation to its mature state. The process whose specific outcome is the progression of the pharyngeal system over time, from its formation to the mature structure. The pharyngeal system is a transient embryonic complex that is specific to vertebrates. It comprises the pharyngeal arches, bulges of tissues of mesoderm and neural crest derivation through which pass nerves and pharyngeal arch arteries. The arches are separated internally by pharyngeal pouches, evaginations of foregut endoderm, and externally by pharyngeal clefts, invaginations of surface ectoderm. The development of the system ends when the stucture it contributes to are forming: the thymus, thyroid, parathyroids, maxilla, mandible, aortic arch, cardiac outflow tract, external and middle ear. The process whose specific outcome is the progression of the postganglionic portion of the parasympathetic nervous system over time, from its formation to the mature structure. The parasympathetic nervous system is one of the two divisions of the vertebrate autonomic nervous system. Parasympathetic nerves emerge cranially as pre ganglionic fibers from oculomotor, facial, glossopharyngeal and vagus and from the sacral region of the spinal cord. Most neurons are cholinergic and responses are mediated by muscarinic receptors. The parasympathetic system innervates, for example: salivary glands, thoracic and abdominal viscera, bladder and genitalia. The process whose specific outcome is the progression of the preganglionic portion of the parasympathetic nervous system over time, from its formation to the mature structure. The parasympathetic nervous system is one of the two divisions of the vertebrate autonomic nervous system. Parasympathetic nerves emerge cranially as pre ganglionic fibers from oculomotor, facial, glossopharyngeal and vagus and from the sacral region of the spinal cord. Most neurons are cholinergic and responses are mediated by muscarinic receptors. The parasympathetic system innervates, for example: salivary glands, thoracic and abdominal viscera, bladder and genitalia. The process whose specific outcome is the progression of the skeleton over time, from its formation to the mature structure. The skeleton is the bony framework of the body in vertebrates (endoskeleton) or the hard outer envelope of insects (exoskeleton or dermoskeleton). The progression of the limbic system over time from its initial formation until its mature state. The limbic system is a collection of structures in the brain involved in emotion, motivation and emotional aspects of memory. The process whose specific outcome is the progression of the stomatogastric nervous system over time, from its formation to the mature structure. Progression of the exocrine system over time, from its formation to a mature structure. The exocrine system is a system of hormones and glands, where the glands secrete straight to a target site via ducts or tubes. The human exocrine system includes the salivary glands, sweat glands and many glands of the digestive system. The process whose specific outcome is the progression of the peripheral nervous system over time, from its formation to the mature structure. The peripheral nervous system is one of the two major divisions of the nervous system. Nerves in the PNS connect the central nervous system (CNS) with sensory organs, other organs, muscles, blood vessels and glands. The process whose specific outcome is the progression of the brain ventricular system over time, from its formation to the mature structure. The brain ventricular system consists of four communicating cavities within the brain that are continuous with the central canal of the spinal cord. These cavities include two lateral ventricles, the third ventricle and the fourth ventricle. Cerebrospinal fluid fills the ventricles and is produced by the choroid plexus. The process whose specific outcome is the progression of a sensory system over time from its formation to the mature structure. The process whose specific outcome is the progression of the root system over time, from its formation to the mature structure. Progression of the endocrine system over time, from its formation to a mature structure. The endocrine system is a system of hormones and ductless glands, where the glands release hormones directly into the blood, lymph or other intercellular fluid, and the hormones circulate within the body to affect distant organs. The major glands that make up the human endocrine system are the hypothalamus, pituitary, thyroid, parathryoids, adrenals, pineal body, and the reproductive glands which include the ovaries and testes. The process whose specific outcome is the progression of the renal system over time, from its formation to the mature structure. The renal system maintains fluid balance and contributes to electrolyte balance, acid/base balance, and disposal of nitrogenous waste products. The process whose specific outcome is the progression of the shoot system over time, from its formation to the mature structure.

View Gene Ontology (GO) Term

GO TERM SUMMARY

Name: system development
Acc: GO:0048731
Aspect: Biological Process
Desc: The process whose specific outcome is the progression of an organismal system over time, from its formation to the mature structure. A system is a regularly interacting or interdependent group of organs or tissues that work together to carry out a given biological process.
Proteins in PDR annotated with:
   This term: 0
   Term or descendants: 10185 [Refine Search]


[geneontology.org]
INTERACTIVE GO GRAPH

GO:0048731 - system development (interactive image map)

YRC Informatics Platform - Version 3.0
Created and Maintained by: Michael Riffle