Saccharomyces cerevisiae C1D is implicated in both non-homologous DNA end joining and homologous recombination

Mol Microbiol. 2002 Nov;46(4):947-57. doi: 10.1046/j.1365-2958.2002.03224.x.

Abstract

C1D is a gamma-irradiation inducible nuclear matrix protein that interacts with and activates the DNA-dependent protein kinase (DNA-PK) that is essential for the repair of the DNA double-strand breaks and V(D)J recombination. Recently, it was demonstrated that C1D can also interact with TRAX and prevent the association of TRAX with Translin, a factor known to bind DNA break-point junctions, and that over expression of C1D can induce p53-dependent apoptosis. Taken together, these findings suggest that mammalian C1D could be involved in maintenance of genome integrity by regulating the activity of proteins involved in DNA repair and recombination. To obtain direct evidence for the biological function of C1D that we show is highly conserved between diverse species, we have analysed the Saccharomyces cerevisiae C1D homologue. We report that the disruption of the YC1D gene results in a temperature sensitivity and that yc1d mutant strains exhibit defects in non-homologous DNA end joining (NHEJ) and accurate DNA repair. In addition, using a novel plasmid-based in vivo recombination assay, we show that yc1d mutant strains are also defective in homologous recombination. These results indicate that YC1D is implicated in both homologous recombination and NHEJ pathways for the repair of DNA double-strand breaks.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Base Sequence
  • Conserved Sequence
  • DNA / genetics
  • DNA / metabolism
  • DNA Repair / genetics
  • DNA, Fungal / genetics
  • DNA, Fungal / metabolism*
  • Gene Deletion
  • Molecular Sequence Data
  • Mutation
  • Recombination, Genetic*
  • Saccharomyces cerevisiae / genetics*
  • Saccharomyces cerevisiae / metabolism
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism*
  • Temperature

Substances

  • DNA, Fungal
  • Saccharomyces cerevisiae Proteins
  • DNA