Nucleus-vacuole junctions in Saccharomyces cerevisiae are formed through the direct interaction of Vac8p with Nvj1p

Mol Biol Cell. 2000 Jul;11(7):2445-57. doi: 10.1091/mbc.11.7.2445.

Abstract

Vac8p is a vacuolar membrane protein that is required for efficient vacuole inheritance and fusion, cytosol-to-vacuole targeting, and sporulation. By analogy to other armadillo domain proteins, including beta-catenin and importin alpha, we hypothesize that Vac8p docks various factors at the vacuole membrane. Two-hybrid and copurfication assays demonstrated that Vac8p does form complexes with multiple binding partners, including Apg13p, Vab2p, and Nvj1p. Here we describe the surprising role of Vac8p-Nvj1p complexes in the formation of nucleus-vacuole (NV) junctions. Nvj1p is an integral membrane protein of the nuclear envelope and interacts with Vac8p in the cytosol through its C-terminal 40-60 amino acids (aa). Nvj1p green fluorescent protein (GFP) concentrated in small patches or rafts at sites of close contact between the nucleus and one or more vacuoles. Previously, we showed that Vac8p-GFP concentrated in intervacuole rafts, where is it likely to facilitate vacuole-vacuole fusion, and in "orphan" rafts at the edges of vacuole clusters. Orphan rafts of Vac8p red-sifted GFP (YFP) colocalize at sites of NV junctions with Nvj1p blue-sifted GFP (CFP). GFP-tagged nuclear pore complexes (NPCs) were excluded from NV junctions. In vac8-Delta cells, Nvj1p-GFP generally failed to concentrate into rafts and, instead, encircled the nucleus. NV junctions were absent in both nvj1-Delta and vac8-Delta cells. Overexpression of Nvj1p caused the profound proliferation of NV junctions. We conclude that Vac8p and Nvj1p are necessary components of a novel interorganelle junction apparatus.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cell Fractionation
  • Cell Nucleus / metabolism
  • Fungal Proteins / genetics
  • Fungal Proteins / metabolism*
  • Intracellular Membranes / metabolism
  • Lipoproteins / genetics
  • Lipoproteins / metabolism*
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism*
  • Nuclear Envelope / metabolism
  • Saccharomyces cerevisiae / growth & development
  • Saccharomyces cerevisiae / metabolism*
  • Saccharomyces cerevisiae Proteins*
  • Vacuoles / metabolism
  • Vesicular Transport Proteins

Substances

  • Fungal Proteins
  • Lipoproteins
  • Membrane Proteins
  • Saccharomyces cerevisiae Proteins
  • VAC8 protein, S cerevisiae
  • Vesicular Transport Proteins