Purification and characterization of isoamyl acetate-hydrolyzing esterase encoded by the IAH1 gene of Saccharomyces cerevisiae from a recombinant Escherichia coli

Appl Microbiol Biotechnol. 2000 May;53(5):596-600. doi: 10.1007/s002530051662.

Abstract

The IAH1 gene of Saccharomyces cerevisiae encodes an esterase that preferentially acts on isoamyl acetate; however, the enzyme has not yet been completely purified from the yeast S. cerevisiae. We constructed the IAH1 gene expression system in Escherichia coli, and purified the IAH1 gene product (Iah1p). The amount of Iah1p produced by recombinant E. coli was more than 40% of total cellular proteins. The molecular size of Iah1p was 28 kDa by SDS-polyacrylamide gel electrophoresis. Judging from the molecular weight estimation by gel filtration of purified Iah1p, the enzyme was thought to be a homodimer. The Km values for isoamyl acetate and isobutyl acetate were 40.3 mM and 15.3 mM, respectively. The enzyme activity was inhibited by Hg2+, p-chloromercuribenzoate, and diisopropylfluorophosphate.

MeSH terms

  • Carboxylic Ester Hydrolases / genetics
  • Carboxylic Ester Hydrolases / isolation & purification*
  • Carboxylic Ester Hydrolases / metabolism*
  • Culture Media
  • Escherichia coli / enzymology
  • Escherichia coli / genetics*
  • Genes, Fungal
  • Japan
  • Plasmids / genetics
  • Recombinant Proteins / isolation & purification
  • Recombinant Proteins / metabolism
  • Saccharomyces cerevisiae / enzymology*
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae Proteins
  • Substrate Specificity
  • Wine / microbiology

Substances

  • Culture Media
  • Recombinant Proteins
  • Saccharomyces cerevisiae Proteins
  • IAH1 protein, S cerevisiae
  • Carboxylic Ester Hydrolases