Slm9, a novel nuclear protein involved in mitotic control in fission yeast

Genetics. 2000 Jun;155(2):623-31. doi: 10.1093/genetics/155.2.623.

Abstract

In the fission yeast Schizosaccharomyces pombe, as in other eukaryotic cells, Cdc2/cyclin B complex is the key regulator of mitosis. Perhaps the most important regulation of Cdc2 is the inhibitory phosphorylation of tyrosine-15 that is catalyzed by Wee1 and Mik1. Cdc25 and Pyp3 phosphatases dephosphorylate tyrosine-15 and activate Cdc2. To isolate novel activators of Cdc2 kinase, we screened synthetic lethal mutants in a cdc25-22 background at the permissive temperature (25 degrees ). One of the genes, slm9, encodes a novel protein of 807 amino acids. Slm9 is most similar to Hir2, the histone gene regulator in budding yeast. Slm9 protein level is constant and Slm9 is localized to the nucleus throughout the cell cycle. The slm9 disruptant is delayed at the G(2)-M transition as indicated by cell elongation and analysis of DNA content. Inactivation of Wee1 fully suppressed the cell elongation phenotype caused by the slm9 mutation. The slm9 mutant is defective in recovery from G(1) arrest after nitrogen starvation. The slm9 mutant is also UV sensitive, showing a defect in recovery from the cell cycle arrest after UV irradiation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Cell Cycle Proteins / chemistry
  • Cell Cycle Proteins / physiology*
  • Cloning, Molecular
  • DNA Primers
  • Gene Expression Regulation, Fungal
  • Mitosis / physiology*
  • Molecular Sequence Data
  • Nuclear Proteins / chemistry
  • Nuclear Proteins / physiology*
  • Schizosaccharomyces / cytology*
  • Schizosaccharomyces pombe Proteins*
  • Sequence Homology, Amino Acid

Substances

  • Cell Cycle Proteins
  • DNA Primers
  • Nuclear Proteins
  • Schizosaccharomyces pombe Proteins
  • Slm9 protein, S pombe