The mitochondrial cytochrome c peroxidase Ccp1 of Saccharomyces cerevisiae is involved in conveying an oxidative stress signal to the transcription factor Pos9 (Skn7)

Mol Gen Genet. 1999 Oct;262(3):437-47. doi: 10.1007/s004380051103.

Abstract

In Saccharomyces cerevisiae two transcription factors, Pos9 (Skn7) and Yap1, are involved in the response to oxidative stress. Fusion of the Pos9 response-regulator domain to the Gal4 DNA-binding domain results in a transcription factor which renders the expression of a GAL1-lacZ reporter gene dependent on oxidative stress. To identify genes which are involved in the oxygen-dependent activation of the Gal4-Pos9 hybrid protein we screened for mutants that failed to induce the heterologous test system upon oxidative stress (fap mutants for factors activating Pos9). We isolated several respiration-deficient and some respiration-competent mutants by this means. We selected for further characterization only those mutants which also displayed an oxidative-stress-sensitive phenotype. One of the respiration-deficient mutants (complementation groupfap6) could be complemented by the ISM1 gene, which encodes mitochondrial isoleucyl tRNA synthetase, suggesting that respiration competence was important for signalling of oxidative stress. In accordance with this notion a rho0 strain and a wild-type strain in which respiration had been blocked (by treatment with antimycin A or with cyanide) also failed to activate Gal4-Pos9 upon imposition of oxidative stress. Another mutant, fap24, which was respiration-competent, could be complemented by CCP1, which encodes the mitochondrial cytochrome c peroxidase. Mitochondrial cytochrome c peroxidase degrades reactive oxygen species within the mitochondria. This suggested a possible sensor function for the enzyme in the oxidative stress response. To test this we used the previously described point mutant ccp1 W191F, which is characterized by a 10(4)-fold decrease in electron flux between cytochrome c and cytochrome c peroxidase. The Ccp1W191F mutant was still capable of activating the Pos9 transcriptional activation domain, suggesting that the signalling function of Ccp1 is independent of electron flux rates.

MeSH terms

  • Cytochrome-c Peroxidase / metabolism*
  • DNA-Binding Proteins / metabolism*
  • Gene Expression
  • Mitochondria / enzymology
  • Mitochondria / metabolism*
  • Mutagenesis
  • Oxidative Stress / genetics*
  • Saccharomyces cerevisiae / enzymology
  • Saccharomyces cerevisiae / genetics*
  • Saccharomyces cerevisiae Proteins*
  • Signal Transduction
  • Transcription Factors / metabolism*
  • Transcriptional Activation

Substances

  • DNA-Binding Proteins
  • SKN7 protein, S cerevisiae
  • Saccharomyces cerevisiae Proteins
  • Transcription Factors
  • Cytochrome-c Peroxidase